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Vapor pressure and thermal stress induced growth and coalsecence of microvoids near
interfaces of die/die-attach and die-pad/moulding compound is recognised as the precursor
to interface delamination and popcorn cracking of plastic electronic packages. When
exposed to humid ambient conditions prior to reflow soldering, plastic electronic packages
absorb moisture, which condenses within the numerous micropores in the substrate, die
attach, moulding compounds and in the vicinity of interfaces joining the different material
layers. During reflow soldering, moisture in these micropores is vaporized. A
representative material cell containing a single microvoid is used to investigate void
growth under combined vapor pressure and thermal stress. A critical surface traction, the
sum of the internal vapor pressure and the externally applied stress, defines the onset of
unstable void growth. Existence of “large” microvoids lowers significantly the critical
stress levels for unstable void growth. These stress levels are consistent with generally
accepted estimates of stress levels for popcorn cracking given in the literature. Vapor
pressure effects can be incorporated into a continuum description of stresses and strains
and the Gurson-Tvergaard void growth model providing a new capability for full-field
analysis of popcorn cracking in electronic packages. C© 2001 Kluwer Academic Publishers

1. Introduction
Moisture-induced popcorn failure is a common type
of failure that occurs during surface mounting of elec-
tronic packages onto printed circuit board. During the
reflow soldering process, the entire plastic package is
exposed to temperatures as high as 220◦C. Under such
temperatures, moisture absorbed by package evapo-
rates generating high internal vapor pressures within
microvoids [1, 2]. Fan and Lim [3] have listed four
stages which lead to final popcorn failure. In stage 1
(preconditioning), the package absorb moisture from
the environment, which condenses in micropores in
the substrate, solder mask, die attach and along the
interfaces. In stage 2, the condensed moisture vapor-
izes under the high temperature associated with the
reflow process, generating high internal vapor pres-
sure which causes microvoids to nucleate, grow rapidly
and coalesce. As a result small interfacial delamina-
tion zones are initiated. In stage 3, the vapor pressure
exerts traction loading on the delaminated interfaces,
aggravating the process of delamination and eventu-
ally causing the package to bulge. In the final stage,
the interface crack (e.g. die/die-attach interface, die-
pad/molding compound interface) propagates laterally
outwards. When the crack reaches the package exterior,
the high-pressure water vapor is suddenly released, pro-
ducing an audible sound like popcorning. The popcorn
cracking as a failure mechanism in electronics pack-
∗Author to whom all correspondence should be addressed.

ages was first postulated by Fukuzawa et al. [1] in 1985
and has since stimulated numerous studies.

Previous works in this field focussing on moisture
analysis have shed much light on moisture diffusion in
electronics packages, e.g. the works of Tay and Lin [4]
for thin quad flat packages (TQFP), and Galloway and
Miles [5] for plastic ball grid array (PBGA) packages.
In the latter a full-field FEA analysis was carried out
to predict the moisture weight gain or loss in order to
estimate the critical moisture concentration leading to
die-die attach interface delamination. By contrast, sim-
ilar in-depth mechanical analysis of popcorn failure is
scarce. One such study was carried out by Fan and Lim
[3], wherein, a representative volume element is intro-
duced to estimate the vapor-pressure induced voiding
effects on delamination. By far, studies to date assumed
a pre-existing macroscopic crack prior to reflow solder-
ing, and the vapor pressure is taken as traction loading
on the delaminated crack [6–8].

The critical role of hydrostatic pressure on cavitation
instability and cavity coalescence has been studied by
Ball [9], Huang et al. [10], Hou and Abeyaratne [11],
and Faleskog and Shih [12]. In a related study of inter-
face delamination between the die-pad and the molding
compound, Liu et al. [13] introduced a micromechan-
ics model for the effective vapor pressure acting on the
interfaces taking account of the evolving (interfacial)
void volume fraction.
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Figure 1 Traction applied to cavity in a finite matrix vs. evolution of
void volume fraction f ( f0 = 0.01, ε0 = 0.01, N = 0). The microvoid is
subjected to internal vapor pressure p and the externally applied radial
stress σA

r .

The above studies taken together offers compelling
evidence of vapor-pressure-induced void initiation,
growth and coalescence as a key mechanism of catas-
trophic failure like popcorn cracking. In this study, we
seek to understand the prototype of an instability event
which is the precursor to the rapid interface delami-
nation resulting in popcorn cracking. Thermal-stress
induced voiding in electronic packages was considered
by Huang et al. [14]. Indeed their result can be ex-
tended to include vapor pressure effects. This develop-
ment is one of several findings reported in the present
investigation.

Section 2 of this paper, treats a spherical cavity in a
finitely deformed elasticplastic solid which is subjected
to internal vapor pressure p and externally applied ra-
dial stress σ A

r (see Fig. 1). Under the combined loading,
p + σ A

r , there is a critical surface traction which defines
the maximal allowable pressure before the occurrence
of unstable void growth and rupture. Moisture analy-
sis by Fan and Lim [3] suggests common polymeric
materials used in IC packages have void volume frac-
tions ranging from 1% to 5%. The presence of such
large initial voids, lowers significantly the critical sur-
face traction to about 2–3 times the uniaxial yield stress
of the polymer. These stress levels are within the previ-
ously estimated stress range for driving popcorn failure
in plastic packages.

In Section 3, a model of vapor pressure which
takes into account the mechanical-thermal coupling of
the microvoid cell is proposed. Moisture concentra-
tions and porosities enter into the modeling. Arising
from finite thermal expansion, the vapor pressure-
temperature relationship exhibit a non-monotonic be-
havior. In Section 4, the microvoid cell is homogenized
to give a continuum description of important physi-
cal quantities. At the macroscopic level, the contri-
bution of vapor pressure to the mean stress takes the
factor form: (1 − f )p, where f is the current volume
fraction of voids. Finally, in Section 5, the Gurson-
Tvergaard model [15, 16] is extended to incorporate
vapor pressure effects. The latter is suitable for imple-
mentation into a finite element code. This adds a new
capability for full-field analysis of popcorn cracking
problems.

2. Critical surface traction of a microvoid cell
The moisture absorbed by the plastic electronic pack-
ages is trapped in numerous tiny pores (or micro-voids).
During surface mounting, the temperature of the pack-
age is raised to about 220◦C, which is sufficient to
evaporate the condensate with the micro-voids. Thus,
the microvoids are subjected to internal vapor pressure
p and remote stress σ A

i j that characterizes the thermal
stress imposed by the surrounding substrates. For the
purpose of analysis, it is convenient to treat a spherical
volume of material containing a microvoid of spherical
shape with initial radius R1. The matrix material is in-
compressible and the outer radius of the thick-walled
sphere has initial radius R2. The inner radial surface is
subjected to internal vapor pressure p; a radial stress
σ A

r is applied to outer radius (see insert in Fig. 1).
Under the action of p and σ A

r , the spherical volume
deforms to the current inner radius r1 and current outer
radius r2. The voided sphere is geometrically charac-
terized by the initial and current void volume fractions
f0 and f :

f0 =
(

R1

R2

)3

, f =
(

r1

r2

)3

. (2.1)

Theoretical estimates by Fan and Lim [3] show that
the initial void volume fraction ranges from 1% to 5%
for some polymeric materials commonly used in IC
packages; for example, f0 = 1.4% for mold compound
and f0 = 3.46% for die attach.

The matrix material of the microvoid cell is assumed
to be an isotropic, incompressible elastic plastic solid
with uniaxial relation between true stress and logarith-
mic strain given by σ/σ0 = H (ε), where σ0 is the yield
stress. The radial equilibrium solution for a spherically
symmetric cell is then found to be (see the Appendix
A, Equation A.13)

σ A
r + p

σ0
=

∫ ε2

ε1

H (ε) dε

1 − exp
(− 3

2ε
) (2.2)

where ε1 and ε2 are the radial strains at the two-end
points of the cell, which can be determined solely by
the current and initial void volume fractions:

ε1 = 2

3
ln

(
f0

f

1 − f

1 − f0

)
, ε2 = 2

3
ln

(
1 − f

1 − f0

)
. (2.3)

Fig. 2 displays the curves of void volume increase
with applied traction σ A

r + p for several (nonzero) ini-
tial void fractions. It can be seen that the applied trac-
tion increases continuously from zero to its peak value
and then decreases. For a defect-free solid, f0 = 0, the
integral in (2.2) defines the so-called cavitation stress
[9–12]. It is the threshold stress for a void to nucleate
and then grow rapidly. The cavitation stress is indicated
by the intersection of dotted line, in Fig. 2, with the ver-
tical axis. The dotted line represents the asymptote for
the trajectories of void volume vs. stress for nonzero
initial void fractions.

A point to note is that for an initially “defect-free”
solid, the critical cavitation stress level is very high, e.g.,
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(a)

(b)

Figure 2 Traction σA
r + p vs. current void volume fraction f for f0

equal 0.005, 0.01, 0.02, 0.03, 0.04 with ε0 = 0.01. (a) N = 0; (b) N = 0.1.
The dotted lines give the result for f0 → 0.

about 3.5σ0 for N = 0, and about 4.2σ0 for N = 0.1.
However, this critical stress level is significantly low-
ered by the larger voids already existing in the plastic
IC packages, whose fractions range from 1% to 5% as
noted earlier.

In summary, the critical surface traction σc, given by
the peak value of each curve, defines the maximal al-
lowable pressure before the cell “bursts”. For highly
constrained ductile components (e.g. the die-attach) in
electronic packages, a local stress-based design crite-
rion may take the form

σ A
r + p ≤ σc. (2.4)

This criterion applies to failure by voiding, such as the
rapid nucleation and growth of voids.

3. Vapor pressure modeling
The foregoing analytic results provide an understanding
of the evolution of microvoid under prescribed tractions
σ A

r and p. In this section, thermal effects are incorpo-
rated in the modeling of vapor pressure.

3.1. Thermal expansion
Thermal strain has no effect on the stress-strain relation
in Equation A.6. Hence Equation 2.2 along with the in-
tegration limits (2.3) remains valid if thermal expansion

is considered. Thermal expansion, however, affects ge-
ometrical relations.

Let α be the thermal expansion coefficient and �T
the temperature rise. The incompressibility reads

εr + εθ + εφ − 3α�T = 0. (3.1)

Substitution of the logarithmic strains (A.3) leads to

dr

dR
=

(
R

r

)2

e3α�T

whose solution is given by

r3 = (
R3 − R3

1

)
e3α�T + r3

1 . (3.2)

With the definition of f in Equation 2.1, we have

f = ρ3

1− f0

f0
e3α�T + ρ3

or ρ = eα�T 3

√
f

f0

1 − f0

1 − f

(3.3)

whereρ = r1/R1 is the growth ratio of the void radii. We
may take f0, f and �T as basic quantities of the void.
Thus, the lower and upper limits of the integration (2.2),
ε1 and ε2 in (2.3), are independent of temperature. For
future use we compute the ratio of the current volume
V to the initial volume V0, of the void cell. This relation
can be obtained from a simple manipulation

V

V0
= r3

2

R3
2

= (1 − f0)e3α�T + f0ρ
3 = 1 − f0

1 − f
e3α�T .

(3.4)

3.2. Vapor pressure for fully
vaporized moisture

Consider a small representative material sample (mi-
crovoid cell) of volume dV which contains a microvoid
of void volume dV f . The vapor pressure p at a fully va-
porized state obeys the ideal gas law [3, 17], given as
follows

pdV f = dm RT (3.5)

where R is the universal gas constant ( =8.314 J/mol),
dm the moisture weight within the microvoid, and T the
temperature in K . Dividing both sides of Equation 3.5
by dV leads to

p f = C RT (3.6)

where C = dm/dV is the local moisture concentration
after preconditioning and f = dV f /dV is the void vol-
ume fraction. Equation 3.6, supplemented by moisture
diffusion analysis [4, 5], permits us to evaluate the ini-
tial volume fraction f0 of the void.

The two states (p, f, T, C) and (p0, f0, T0, C0) are
related by

p

p0
= T f0C

T0 f C0
. (3.7)
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During deformation (dV0 → dV ) associated with a tem-
perature rise �T (= T − T0), the moisture weight dm
is assumed conserved. Hence

p

p0
= T

T0

f0

f

dV0

dV
. (3.8)

From (3.4), the relative volume change dV/dV0 of
the microvoid cell during mechanical deformation and
thermal expansion is

dV

dV0
= 1 − f0

1 − f
e3α�T . (3.9)

Combining Equations 3.8 and 3.9 gives

p

p0
= T

T0

f0

f

1 − f

1 − f0
e−3α�T . (3.10)

It is noted that the vapor pressure depends on tem-
perature and void volume fraction. With given values
of f and f0, the vapor pressure p attains the maximum
value pmax at the critical temperature Tc = 1/3α:

pmax = p0
exp(3αT0 − 1)

3αT0

f0

f

1 − f

1 − f0
, (3.11)

Using this, Equation 3.10 can be rewritten as

p

pmax
= 3αT exp(1 − 3αT ). (3.12)

Fig. 3 shows the relationship between the normal-
ized vapor pressure p/pmax and the normalized tem-
perature 3αT . The occurrence of the peak pressure
pmax is due to finite thermal expansion of the cell
(see Equation 3.9). This peak value, however, cannot
be reached in general. Consider for example, the die
attach, with α = 1.5 × 10−4. The use of (3.12) gives
a critical temperature of Tc = 1949◦C, which is much
higher than the surface mounting temperature of about
220◦C. The vapor pressure p can thus be considered
to be a monotonically increasing function of temper-
ature during surface mounting. For the die attach, the
vapor pressure ratio p/pmax is about 0.48. Increasing

Figure 3 Behavior of moisture-induced vapor pressure in a microvoid
cell vs. temperature.

the temperature from the room temperature of 25◦C to
220◦C causes an increase in the vapor pressure in
the die attach by 3.14 times when void volume frac-
tions remain unchanged, as can be deduced in Equa-
tion 3.10.

3.3. Two-phase vapor pressure
In the previous section, a relationship between the inter-
nal vapor pressure p, the void volume fraction f and
temperature T has been obtained under the assump-
tion that the moisture in a microvoid is fully vaporized
at T between the preconditioning temperature T0 and
the peak reflow temperature Tr (T0 ≤ T ≤ Tr). For non-
fully vaporized moisture, however, water and vapor gas
phases coexist. To describe this two-phase moisture,
one should determine the transition temperature Tc at
which the moisture in voids is fully saturated in vapor
phase, and then identify three distinct cases at which
vapor pressure may be computed [3]. The first case is
when the moisture density in the voids is low enough
such that all the moisture becomes vaporized at pre-
conditioning temperature T0; i.e. Tc ≤ T0. This was the
case treated above.

In the second case, the moisture is fully vaporized
at a temperature between preconditioning T0 and the
peak reflow temperature Tr; i.e. T0 ≤ Tc ≤ Tr. In the last
case, the moisture is not fully vaporized even at reflow
temperature Tr; i.e. Tc ≥ Tr. For these two cases, strong
nonlinearities are found among vapor pressure, thermal
expansion and the transition temperature, which will
make the formulation cumbersome. We leave this topic
for future study.

4. Homogenization: a continuum description
Let VM and V be the matrix and cell volumes, re-
spectively. For the spherical shell under study, VM =
4π (r3

2 − r3
1 )/3 and the micro volume element is dv =

4πr2dr . We thus have

dv

V
= f

dr3

r3
1

= 3

2

f − f0

1 − f0

e
3
2 ε dε(

1 − e
3
2 ε

)2 (4.1)

where ε signifies the radial strain εr given in (A.9). Re-
call that volume averaging of microscopic fields gives
the macroscopic counterparts; e.g. for stress σi , the
macroscopic stress �i is defined by

�i = 1

V

∫
VM

σi dv i = r, θ, φ (4.2)

in the current configuration.
By (A.12), the macroscopic radial stress �r is

�r

σ0
= 3

2

f − f0

1 − f0

∫ ε2

ε1

e
3
2 ε dε(

1 − e
3
2 ε

)2

∫ ε

ε1

H (τ ) dτ

1 − e− 3
2 τ

− (1 − f )p

σ0
. (4.3)

As the microscopic mean stress is defined as σm =
(σr + 2σθ )/3, the macroscopic mean stress is as follows:
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�m

σ0
= �r

σ0
− f − f0

1 − f0

∫ ε2

ε1

H (ε) e
3
2 ε dε(

1 − e
3
2 ε

)2

= f − f0

1 − f0

{
3

2

∫ ε2

ε1

e
3
2 ε dε(

1 − e
3
2 ε

)2

∫ ε

ε1

H (τ ) dτ

1 − e− 3
2 τ

−
∫ ε2

ε1

H (ε) e
3
2 ε dε(

1 − e
3
2 ε

)2

}
− (1 − f )p

σ0
. (4.4)

In order to arrive at the above expression, the equation
(σr − σθ )/σ0 = H (εr) is used. It is interesting to note
that the vapor pressure p appears in the above expres-
sion for the macroscopic mean stress �m, with a scaling
factor of (1 − f ). This proves to be useful in extending
the Gurson model [15] to incorporate the effect of va-
por pressure. The microscopic Mises stress is defined as
σe = |σr − σθ |; the corresponding macroscopic quantity
is as follows:

�r − �θ

σ0
= 3

2

f − f0

1 − f0

∫ ε2

ε1

H (ε)
e

3
2 ε dε(

1 − e
3
2 ε

)2 . (4.5)

Invoking incompressibility, the microscopic effective
strain is εe = 2

3 |εr − εθ | = |εr| and εr = −2εθ . Averaging
εr leads to

Er = −2Eθ = 1

V

∫
VM

εr dv = 3

2

f − f0

1 − f0

∫ ε2

ε1

εe
3
2 ε dε(

1 − e
3
2 ε

)2

= 2

3(1 − f0)

{
ln

1 − f

1 − f0
+ f0 ln

1 − f0

f0(1 − f )

+ f ln
f (1 − f0)

1 − f
+ f f0 ln

f0(1 − f )

f (1 − f0)

}
(4.6)

It is readily deduced that lim f →1 Er = 0, inferring
that the macroscopic effective strain, |Er|, at final rup-
ture is zero. It also implies that Er is not a mono-
tonically increasing function of f . As the void grows
( f increases), there exists an extremum for Er (or Eθ )
if f satisfies the following condition

fc = 1

1 + f
f0

1− f0

0 − f
1

1− f0

0

. (4.7)

Equation 4.7 describes a family of critical void fractions
with the minimum f ∗

c corresponding to f0 approaching
zero:

f ∗
c = lim

f0→0
fc = 1

2
. (4.8)

Correspondingly, Eθ attains the maximum E∗
θ :

E∗
θ = lim

f0→0
Eθ

∣∣
f = 1

2
= 1

3
ln 2 (4.9)

where

lim
f0→0

Eθ = −1

3
[ f ln f + (1 − f ) ln(1 − f )]. (4.10)

Figure 4 Evolution of f relative to the effective macroscopic strain,
2Eθ , for several different f0. For each f0, Eθ has a maximum. The
dotted line is the trajectory joining the maximum of various f0.

Thus, one may conclude that during the course of void
growth, Eθ is finite with a limit ( 1

3 ln 2), irrespective of
the evolution law of f .

Fig. 4 shows the trajectory of f versus the macro-
scopic effective strain 2Eθ , where the curve corre-
sponding to f0 = 0 is governed by Equation 4.10, and
the dotted line is the trajectory joining the maxima
of Eθ for various initial void volume fractions. Since
lim f →1 Eθ = 0, any trajectory in the ( f, Eθ )-space will
be terminated at the point (1, 0).

It is worthwhile to make a few remarks on (4.7). In
the current use of the Gurson model [15], one needs
to know the critical porosity for the onset of coales-
cence and for final material failure. Here, depending on
the initial state, the critical porosity fc given in (4.7)
has a minimum value f ∗

c = 1
2 when the initial porosity

approaches zero, and to the value f ∗
c = 1

2 there corre-
sponds the maximum effective strain 2E∗

θ . Hence for
the single void under study (without void interactions),
we may take f ∗

c as the void volume fraction at final frac-
ture: fF = f ∗

c = 1
2 . With void interactions, the value fF

will be much lower than f ∗
c . Studies by Tvergaard and

Needlemann [18] have indicated that fF is about 0.25.
In the above homogenization, we obtain three macro-

scopic invariants, the mean stress �m, the Mises stress
�θ − �r, and the effective strain 2Eθ . In the state space
spanned by them, one can envision the evolution of void
volume fractions. Figs 5 and 6 show three sections in
state spaces; Fig. 5 focuses on the influence of the ini-
tial void volume fraction f0 while Fig. 6 focuses on the
effect of hardening of N . In these figures, ε0 is set to
be 1 percent and f is taken to be a flow parameter be-
ginning with a certain initial value f0 and ending with
f = 1. The hardening exponent is taken as N = 0.1 in
Fig. 5 while the initial fraction is taken as f0 = 0.01 in
Fig. 6.

Fig. 5a shows the behavior in the stress space. High
stress triaxiality is observed in the early stage of the
void growth. From Fig. 5b and c, one can easily see
that the initial value f0 of f has significant effect on
the flow before effective strain 2Eθ attains its maximum
value. After the maximum strain is reached, the effect of
f0 diminishes and becomes negligible as f approaches
f = 1. In the very early stage of the flow, the mean stress
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(a)

(b)

(c)

Figure 5 Evolution in the macroscopic state space spanned by effec-
tive stress, �θ − �r, mean stress plus vapor pressure, �m + (1 − f )p,
and effective strain, 2Eθ for f0 = 0.005, 0.01, 0.03, 0.05; N = 0.1
and ε0 = 0.01. (a) Section of �θ − �r ∼ �m + (1 − f )p, (b) section of
�θ − �r ∼ 2Eθ and (c) section of �m + (1 − f )p ∼ 2Eθ .

together with vapor pressure attains its maximum; it
decreases rapidly thereafter towards its zero state after
crossing the turning point where 2Eθ is maximal (see
Fig. 5c). The effective stress, however, has a relatively
smooth change with increasing 2Eθ , so the maximal
point is not as pronounced as in the case of the mean
stress (see Fig. 5b).

Since the effective strain 2Eθ depends only on void
fractions, the hardening parameter N affects only the
stress level, but not the deformation. For a given ini-
tial void volume fraction, the deformation is limited

(a)

(b)

(c)

Figure 6 Evolution in the macroscopic state space spanned by effective
stress, �θ − �r, mean stress plus vapor pressure, �m + (1 − f )p, and
effective strain, 2Eθ , for N = 0.0, 0.1, 0.2 and 0.3, ε0 = 0.01. (a) Sec-
tion of �θ − �r ∼ 2Eθ and (b) section of �m + (1 − f )p ∼ 2Eθ , and
(c) section of �θ − �r ∼ �m + (1 − f )p.

by the maximal effective strain. With an increase in
the effective strain from zero to its maximum value of
about 0.43, the effective stress increases almost mono-
tonically, with different hardening exponent effecting
different patterns of increase (Fig. 6a); in contrast,
the mean stress displays a parallel decrease for dif-
ferent hardening exponent after attaining its maximum
(Fig. 6b). The triaxiality for different exponent is ap-
proximately a constant, see Fig. 6c.

Fig. 7 displays the behavior of the macroscopic
mean stress versus the current void volume fraction for
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Figure 7 Behavior of macroscopic mean stress versus current void vol-
ume fraction for f0 = 0.005, 0.01, 0.03, 0.05.

several values of f0. The materials constants are those
used to generate the results in Fig. 5.

5. Extension of the Gurson model
The preceding micromechanics analysis applies for
proportional loadings of a spherically-symmetric cell.
For multiaxial loadings, we provide a tentative modi-
fied Gurson model incorporating internal vapor pres-
sure. The Gurson-Tvergarrd yield condition [15, 16] is
given by

� =
(

�e

σe

)2

+ 2q1 f cosh

(
3q2�m

2σe

)
−(

1+q3 f 2) = 0

(5.1)

where �e denotes the Mises equivalent macroscopic
stress, �m the mean macroscopic stress, σe the Mises
equivalent stress of the matrix and f the current void
fraction. Factors q1, q2 and q3 were introduced by
Tvergaard to improve the model predictions for peri-
odic arrays of cylindrical and spherical voids.

A point to note is that the Gurson yield condition was
derived originally from a cell containing a traction-free
void, and the matrix is assumed to be rigid-plastic. De-
noting the microscopic stress field of a traction-free
void cell by σ 0

i j , the microscopic stress field σi j for a
non-traction-free void cell is the superposition of inter-
nal pressure p and σ 0

i j :

σi j = −pδi j + σ 0
i j (5.2)

The above is exact, up to first order, as long as the void
remains spherical throughout the deformation.

Recalling that macroscopic stress �i j is defined as
the average of the microscopic stress σi j over the cell,
the following equation is obtained

�i j = 1

V

∫
VM

σi j dv = (1 − f )
1

VM

∫
VM

σi j dv (5.3)

where V is the cell volume, VM is the matrix volume and
f is the void volume fraction. Substitution of Equation
5.2 yields

�i j = −(1 − f )pδi j + �0
i j (5.4)

and the mean macroscopic stress �m is

�m = �0
m − (1 − f )p. (5.5)

Observe that �0
i j and �0

m are the macroscopic stresses
corresponding to σ 0

i j . Therefore for a traction-free void
cell the mean macroscopic stress �0

m can be expressed
in terms of �m, p and f :

�0
m = �m + (1 − f )p. (5.6)

Since internal pressure has no effect on the Mises
(macroscopic) stress, replacement of �m by �m +
(1 − f )p in the Gurson-Tvergaard yield condition (5.1)
gives the modified G-T model which is shown as
follows

� =
(

�e

σe

)2

+ 2q1 f cosh

(
3q2[�m + (1 − f )p]

2σe

)

− (
1 + q3 f 2) = 0. (5.7)

It is noted that the contribution of vapor pressure to
the (macroscopic) mean stress takes the factor form
(1 − f )p. A similar factor has appeared in the works
of Fan [19] on the yield criterion for PMMA at a bone-
implant interface. Herein the internal pressure p within
the void is a function of void volume fraction f and
temperature T , as given by (3.10).

The standard Gurson-Tvergaard relation has two in-
ternal variables, σe and f . The extended form intro-
duces an additional variable p. The evolution rule for
p obeys (3.12) for Tc ≤ T0. More work is required to for-
mulate the evolution rules for p encompassing the tem-
perature range T0 ≤ Tc ≤ Tr, and Tc ≥ Tr. Nevertheless,
the above (extended) Gurson model when implemented
for finite element crack growth analysis in the manner
of Xia and Shih [20, 21] could add new insights on phe-
nomenon of popcorn cracking in electronic packages.

6. Concluding remarks
Theoretical results for a microvoid growth under both
internal vapor pressure and external loading is obtained
within the context of finite deformation. Under the com-
bined loading, p + σ A

r , there is a critical surface traction
which defines occurrence of unstable void growth and
rupture. The existence of large initial voids, void vol-
ume fractions ranging from 1% to 5%, lowers signifi-
cantly the critical surface traction to about 2–3 times the
uniaxial yield stress of the polymeric material. These
stress levels fall within generally accepted estimates
of the stress range associated with popcorn failure in
plastic packages.

At a macroscopic level, the contribution of vapor
pressure to the mean stress takes the factor form,
(1 − f )p, i.e. a fraction of vapor pressure. Homoge-
nization of the cell also shows that the macroscopic ef-
fective strain is finite during the course of void growth
and depends only on current void volume fraction.

A model of vapor pressure which takes into account
the mechanical-thermal coupling of the microvoid cell
is established. Moisture concentrations and porosities

5877



enter into the modeling. Nonlinear behaviors of vapor
pressure with temperature rise are revealed.

The Gurson-Tvergaard model has been extended to
incorporate vapor pressure effects. The extended model
is being implemented in a finite element code which will
provide a new capability to perform full-field analysis
of popcorn cracking in electronic packages.
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A. Appendix
Let (R, �, �) denote the spherical coordinates of a
point in the reference undeformed microvoid, and
(r, θ, φ) denote the corresponding coordinates in the de-
formed cell. With spherically symmetric deformation,

r = r̂ (R), θ = �, φ = �.

The deformation gradient tensor F is

F = dr̂

dR
er ⊗ er + r̂

R
(eθ ⊗ eθ + eφ ⊗ eφ)

where er ,eθ and eφ forms an orthonormal basis for the
spherical coordinate system (the two coordinate sys-
tems are assumed to coincide; e.g., eR = er .) Incom-
pressibility of the matrix gives

r3 − r3
1 = R3 − R3

1, (A.1)

which is equivalent to the condition det ([Fi j ]) = 1, or

dr̂

dR
=

(
R

r̂

)2

.

From (A.1), the current void volume fraction f can be
written as

f = f0ρ
3

1 − f0 + f0ρ3

where ρ = r1/R1 signifies the growth ratio of the mi-
crovoid. The growth ratio ρ may be expressed in terms
of the initial and current void volume fractions as

ρ = 3

√
f

f0

1 − f0

1 − f
. (A.2)

Therefore, any nondimensional quantities generated by
r1, r2, R1 and R2 can be expressed in terms of f0 and f .

As cavitation is a phenomenon of instability in ma-
terials, it is necessary to consider finite deformation of
the solid. Invoking incompressibility condition equa-
tion (A.1), the true (logarithmic) strains, defined by the
principal stretches in the respective directions, are

εr = ln
dr

dR
, εθ = εφ = ln

r

R
. (A.3)

In the deformed configuration, the true (Cauchy) stress
components in spherical coordinate system (r, θ, φ) are
σr, σθ and σφ , which satisfy the following equilibrium
equation

dσr

dr
+ 2

r
(σr − σθ ) = 0 (A.4)

together with σφ = σθ . The boundary conditions are

σr(r = r1) = −p, σr(r = r2) = σ A
r . (A.5)

It is noted that both p and σ A
r are Cauchy-type tractions

applied at the void surface r1 and at the outer boundary
r2 of the matrix, respectively.

Following the approach of Huang et al. [14], the ma-
trix is assumed as an isotropic, incompressible elastic-
plastic solid with a uniaxial relation between true stress
and logarithmic strain given by

σ

σ0
= H (ε) (A.6)

where σ0 is the tensile yield stress. For an elastic-plastic
power hardening solid, H (ε) has the form

H (ε) =
{

ε/ε0 if |ε| < ε0

(|ε|/ε0)N sign (ε) if |ε| ≥ ε0
(A.7)

where ε0 = σ0/E is the reference strain, E the Young’s
modulus, and N the power-law exponent (0 ≤ N < 1).
The special case of N = 0 corresponds to an elastic-
perfect plastic solid.

The true (Cauchy) stresses in a spherical symmetric
state can be resolved into a pure hydrostatic stress state
and a pure uniaxial one,

(σr, σθ , σφ) = (σθ , σθ , σθ ) + (σr − σθ , 0, 0).

Since the hydrostatic stress does not produce any strains
in an incompressible solid, the uniaxial portion of the
stress (σr − σθ ) is directly related to the radial strain εr.
Therefore Equation A.6 may be rewritten as

σr − σθ

σ0
= H (εr ). (A.8)

In fact, (σr − σθ ) is the Mises stress and εr is the effective
strain, up to a sign.

With the use of Equation A.1, the radial strain εr in
(A.3) may be expressed as follows

εr = 2

3
ln

r3 − r3
1 + R3

1

r3
. (A.9)

At the void surface r = r1, the radial strain in Equa-
tion A.9 is

εr(r = r1) = 2

3
ln

R3
1

r3
1

= 2

3
ln ρ−3

= 2

3
ln

(
f0

f

1 − f

1 − f0

)
≡ ε1. (A.10)
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At the surface r = r2,

εr(r = r2) = 2

3
ln

(
1 − f

1 − f0

)
≡ ε2. (A.11)

Equations A.10 and A.11 show that the radial strains at
the two surfaces of the microvoid cell can be determined
from the current and initial void volume fractions.

Using Equation A.9, the governing equation (A.4)
may be rewritten as

dσr

dεr
= σ0 H (εr)

1 − exp
(
1 − 3

2εr
) . (A.12)

Integration of Equation A.12 from ε1 to ε2 yields

σ A
r + p

σ0
=

∫ ε2

ε1

H (ε) dε

1 − exp
(− 3

2ε
) def= F ( f ; f0, ε0, N )

(A.13)

which is a function of the void volume fraction f with
f0, ε0 and N as parameters. It may be noted that the
integral in (A.13) is the same as that given by Huang
et al. [14]. Also, the use of ε1 and ε2 as limits of integra-
tion is useful because they are independent of thermal
expansions (see, Section 3).

Equation A.13 establishes a relation between the cur-
rent void volume fraction f and the sum of the inter-
nal vapor pressure p and the externally imposed radial
stress σ A

r . Similar to what is shown by Huang et al. [14],
the integral in (A.13) has its maximum at a critical (cur-
rent) void volume fraction fcr, which can be computed
from the extremum condition d(σ A

r + p)/d f = 0; i.e.

H (ε2)

1 − exp
(− 3

2ε2
) dε2

d f
− H (ε1)

1 − exp
(− 3

2ε1
) dε1

d f
= 0.

Substitution of Equations A.10 and A.11 yields

1

f − f0

[
H (ε2) − f0

f
H (ε1)

]
= 0. (A.14)

When f �= f0, the bracketed term in (A.14) is zero, and
the critical fraction fcr is well-defined. For the sum
of the applied radial stress and vapor pressure to attain
the maximum value, the material in the outer region of

the cell must be elastic and the material in the inner
region must be plastic [22]. Such a critical behavior is
attributed to the synergistic interplay between elasticity
and plasticity (see, Faleskog and Shih [12]). Also, void
growth ( f ≥ f0) implies ε1, ε2 ≤ 0 as seen from (A.10)
and (A.11). Thus, Equation A.14 can be explicitly
expressed as

ε2

ε0
+ f0

f

(−ε1

ε0

)N

= 0. (A.15)

by using (A.7).
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